美术高考网·美术高考生必上美术高考网门户 今天你来美术高考网了吗?
当前位置: 主页 > 美术高考 > 高考大纲 >

2009年数学文高考大纲导读:考试大纲导读(3)

时间:2009-04-25 美术高考网 www.mshao.com来源:美术高考网
  

【试题举例】

  在R上定义的函数f(x)是偶函数,且f(x)=f(2-x).若f(x)在区间[1,2]上是减函数,则f(x)(  )

  A.在区间[-2,-1]上是增函数,在区间[3,4]上是增函数

  B.在区间[-2,-1]上是增函数,在区间[3,4]上是减函数

  C.在区间[-2,-1]上是减函数,在区间[3,4]上是增函数

  D.在区间[-2,-1]上是减函数,在区间[3,4]上是减函数

  【答案】B

  【解析】由f(x)=f(2-x)可知f(x)图象关于x=1对称,又因为f(x)为偶函数图象关于x=0对称,可得到f(x)为周期函数且最小正周期为2,结合f(x)在区间[1,2]上是减函数,可得如上f(x)草图.故选B.

  (3)了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数.

  【导读】反函数的定义不只局限于函数y=ax(x∈R)与函数y=logax(x∈(0,+∞)),对于其他的函数也有可能存在反函数.只有一一对应的函数才有反函数,证明唯一性命题既要证存在性,又要用反证法证其唯一性.遇到互为反函数问题时,要时刻记住两者定义域与值域互换.确定函数三要素、求反函数等课题的综合性,不仅要用到解方程、解不等式等知识,还要用到换元思想、方程思想等与函数有关概念的结合.从定义域到值域上的一一映射确定的函数才有反函数;反函数的定义域、值域上分别是原函数的值域、定义域,若y=f(x)与y=f-1(x)互为反函数,函数y=f(x)的定义域为A、值域为B,则f[f-1(x)]=x(x∈B),f-1[f(x)]=x(x∈A);单调性、图象:互为反函数的两个函数具有相同的单调性,它们的图象关于y=x对称.求反函数的一般方法:

  (1)由y=f(x)解出x=f-1(y),(2)将x=f-1(y)中的x,y互换位置,得y=f-1(x),(3)求y=f(x)的值域得y=f-1(x)的定义域.

  【试题举例】(2008·全国卷一)

  若函数y=f(x)的图象与函数y=lnx+1的图象关于直线y=x对称,则f(x)=(  )

  A.e2x-2 B.e2x C.e2x+1 D.e2x+2

  【答案】A

  【解析】本小题主要考查原函数与反函数图象间的关系及反函数的求法.

  由题意知y=f(x)与y=lnx+1互为反函数,y=lnx+1的反函数的求解如下:y-1=lnx,x=ey-1,两边平方得x=e2y-2,交换x,y,则得y=lnx+1的反函数为f(x)=e2x-2,故选A.

  (4)理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质.

  【导读】1.本小节的重点是指数函数的图象和性质的应用.对于含有字母参数的两个函数式比较大小或两个函数式由于自变量的不同取值而有不同大小关系时,必须对字母参数或自变量取值进行分类讨论.用好用活指数函数单调性,是解决这一类问题的关键.

  2.对可化为a2x+b·ax+c=0或a2x+b·ax+c≥0(≤0)的指数方程或不等式,常借助换元法解决,但应提醒学生注意换元后"新元"的范围.

  【试题举例】

  设a=log123,b=130.2,c=213,则(  )

  A.a<b<c B.c<b<a C.c<a<b D.b<a<c

  【答案】A

  【解析】∵由指、对函数的性质可知:a=log123<log121=0,0<b=130.2<1,c=213>1,∴有a<b<c.

  (5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图象和性质.

  【导读】1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.

  2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.学生在理解有关的例题时,要强化这方面的意识.

  【试题举例】

  设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值之差为12,则a等于(  )

  A.2 B.2 C.22 D.4

  【答案】D

  【解析】设a>1,函数f(x)=logax在区间[a,2a]上的最大值与最小值分别为loga2a,logaa=1,它们的差为12,∴loga2=12,a=4,选D.

  (6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.

  【导读】指数函数f(x)=ax,具有性质:f(x+y)=f(x)f(y),f(1)=a≠0.对抽象函数的研究,合理赋值是唯一途径,不能仅依赖于函数模型;对数函数f(x)=logax,具有性质:f(xy)=f(x)+f(y),f(a)=1(a>0,a≠1),应注意对数函数的图象性质在解题中的应用.

  【试题举例】

  设a,b,c均为正数,且2a=log12a,12b=log12b,12c=log2c,则(  )

  A.a<b<c  B.c<b<a

  C.c<a<b D.b<a<c

  【答案】A

  【解析】由2a=log12a可知a>0?2a>1?log12a>1?0<a<12,由12b=log12b可知b>0?0<log12b<1?12<b<1,由12c=log2c可知c>0?0<log2c<1?1<c<2,从而a<b<c.故选A.

  4.不等式

  考试内容:

  不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.

  考试要求:

  (1)理解不等式的性质及其证明.

  【导读】不等式的性质是不等式的理论支撑,其基础性质源于数的大小比较.要注意以下几点:

  1.加强化归意识,把比较大小问题转化为实数的运算;

  2.通过复习要强化不等式"运算"的条件.如a>b、c>d在什么条件下才能推出ac>bd;

  3.强化函数的性质在大小比较中的重要作用,加强知识间的联系;

  4.不等式的性质是解、证不等式的基础,对任意两实数a、b有a-b>0?a>b,a-b=0?a=b,a-b<0?a<b,这是比较两数(式)大小的理论根据,也是学习不等式的基石;

  5.一定要在理解的基础上记准、记熟不等式的性质,并注意解题中灵活、准确地加以应用;

  6.对两个(或两个以上)不等式同加(或同乘)时一定要注意不等式是否同向(且大于零);

  7.对于含参问题的大小比较要注意分类讨论.

  【试题举例】

  已知a,b为非零实数,且a<b,则下列命题成立的是(  )

  A.a2<b2 B.ab2<a2b C.1ab2<1a2b D.ba<ab

  【答案】C

  【解析】若a<b<0?a2>b2,A不成立;若ab>0a<b?a2b<ab2,B不成立;若a=1,b=2,则ba=2,ab=12?ba>ab,所以D不成立,故选C.

  (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.

  【导读】1.在证明不等式的各种方法中,作差比较法是一种最基本、最重要的方法,它是利用不等式两边的差是正数还是负数来证明不等式,其应用非常广泛,一定要熟练掌握.

  2.对于公式a+b≥2ab,ab≤a+b22要理解它们的作用和使用条件及内在联系,两个公式也体现了ab和a+b的转化关系.

  3.在应用均值定理求最值时,要把握定理成立的三个条件,就是"一正--各项均为正;二定--积或和为定值;三相等--等号能否取得".若忽略了某个条件,就会出现错误.

  【试题举例】

  如果正数a,b,c,d满足a+b=cd=4,那么(  )

  A.ab≤c+d,且等号成立时a,b,c,d的取值唯一

  B.ab≥c+d,且等号成立时a,b,c,d的取值唯一

  C.ab≤c+d,且等号成立时a,b,c,d的取值不唯一

  D.ab≥c+d,且等号成立时a,b,c,d的取值不唯一

  【答案】A

  【解析】∵正数a,b,c,d满足a+b=cd=4,∴4=a+b≥2ab,即ab≤4,当且仅当a=b=2时,"="成立;又4=cd≤c+d22,∴c+d≥4,当且仅当c=d=2时,"="成立;综上得ab≤c+d,且等号成立时a,b,c,d的取值都为2,选A.

  (3)掌握分析法、综合法、比较法证明简单的不等式.

  【导读】1.在证明不等式的过程中,分析法和综合法是不能分离的,如果使用综合法证明不等式难以入手时,常用分析法探索证题途径,之后用综合法的形式写出它的证明过程.有时问题证明难度较大,常使用分析综合法,实现两头往中间靠以达到证题目的.

  2.由于高考试题不会出现单一的不等式的证明题,常常与函数、数列、三角、方程综合在一起,所以在学习中,不等式的证明除常用的三种方法外,还有其他方法,如比较大小.证明不等式的常用方法有:差、商比较法、函数性质法、分析综合法和放缩法.要能了解常见的放缩途径,如:利用增或舍、分式性质、函数单调性、有界性、基本不等式及绝对值不等式性质和数学归纳法等.有时要先对不等式作等价变形再进行证明,有时几种证明方法综合使用.

  3.比较法有两种形式:一是作差,二是作商.用作差法证明不等式是证明不等式中最基本、最常用的方法.它的依据是不等式的基本性质.步骤是:作差(商)→变形→判断.变形的目的是为了判断.若是作差,就判断与0的大小关系,为了便于判断,往往把形式变为积或完全平方式.若是作商,两边为正,就判断与1的大小关系.

  【试题举例】

  当x∈(1,2)时,不等式x2+mx+4<0恒成立,则m的取值范围是   .

  【答案】m≤-5

  【解析】构造函数:f(x)=x2+mx+4,x∈[1,2].由于当x∈(1,2)时,

  不等式x2+mx+4<0恒成立.则f(1)≤0,f(2)≤0,即

  1+m+4≤0,4+2m+4≤0.解得:m≤-5.

  (4)掌握简单不等式的解法.

  【导读】1.解不等式的过程,实质上是不等式等价转化过程.因此在学习中理解保持同解变形是解不等式应遵循的基本原则.

  2.各类不等式最后一般都要化为一元一次不等式(组)或一元二次不等式(组)来解,这体现了转化与化归的数学思想.

  3.解不等式几乎是每年高考的必考题,重点仍是含参数的有关不等式,对字母参数的逻辑划分要具体问题具体分析,必须注意分类不重、不漏、完全、准确.

  

免责说明:

(一) 由于各方面情况的调整与变化,本网所提供的信息仅供参考,并不意味赞同其观点或证实其内容的真实性,相关信息敬请以权威部门公布的信息为准。

(二)本网未注明来源或注明来源为其他媒体的稿件均为转载稿,免费转载出于非商业性学习目的,版权归原作者所有,如有内容、版权等问题,请通过邮件的方式与本网联系。邮箱:375331114@QQ.Com 我们将会在收到邮件后及时进行处理。

------分隔线----------------------------